next generation led

info@nextgenerationled.be www.nextgenerationled.be Tel + 32 53 71 09 42

Valto High Bay

Properties

- Lifespan L70 %: > 50.000 hours
- No Flickering reduces eye strain
- Energy savings up to 80% over conventional fluorescent light sources
- 0-10V dimming for implementing lumen maintenance and task tuning strategies for up to 20% additional savings
- Self metering and over temperature protection
- Superior cut-off (50°) to eliminate glare
- Uniform illumination and even light levels across floor
- 0-10V dimming standard
- Optional occupancy sensor
- Optional uplight accessory
- Mounting: E39/E40 or hook
- Anodized solid aluminum body
- Warranty: 5 years

Application

Washdown areas, food processing, hazardous operating environments,...

Ballast compatible	Fanless for high reliability & efficiency	10% up access availa
1	t Ballast compatible	t Ballast Fanless t compatible reliability & efficiency

Specifications

Valto	400	600	Fixture 400	Fixture 600		
Power	105W	150W	105W	150W		
Input voltage	90 ~ 305 VAC 50 / 60Hz OR magnetic ballast compatible					
Color temperature	4000 K and 5000 K					
Color rendering index	CRI ≥ 80					
Powerfactor (Pf)	> 0.9					
Beam angle	90 °					
Temperature in use	65°C	50°C	65°C	50°C		
Luminous intensity	15000	20000	15000	20000		
Lumens / Watt	143	130	143	130		
Dimming	0-10V to 10%					
Weight	1.65 kg	1.65 kg	1.85 kg	1.85 kg		

CIE 1931

The CIE color space, developed in 1931, is still used to define colors, and as a reference for other color spaces. The figure is a two-dimensional display of colors of the same intensity (brightness), which is based on observations of color measurements by people.

SPECTRUM

Isaac Newton used the Latin word spectrum to define the color series which arose when he dropped a bundle of sunlight through a glass prism. The color spectrum consists of the colors of the rainbow with the color sequence red-orange-yellow-green-blue-indigo-violet, which corresponds to bearish wave length (increasing frequency) of the light waves.

C78 377

ANSI C 78.377 is now the standard for color quality, as determined by the American National Standards Institute. ANSI recommends lamp manufacturers to stay within a 4-step ellipse. This means that manufacturers with a particular focus on the CIE diagram have a broad range of observable differences.

									R	e =	/4
									Ra	a =	82
R1											79
R2											85
R3 📃											89
R4											82
R5											79
R6 📃											79
R7 🔳											88
R8 🔳			-		_						69
R9											12
R10											64
R11				_							80
R12											57
R13		-						-			80
R14									- in		94
R15											74
0	10	20	30	40	50	60	70	80	90	10	0

CRI HISTOGRAM

The color reproduction of a light source indicates whether the color of an object can be displayed true to nature. The graph shows whether we can accurately determine color, depending on the color rendering properties of the light source.

Ra = average of R1 to R8

Re = average of R1 to R15

R9 = saturated red. Should be as high as possible.

SDCM

SDCM is an acronym which stands for Standard Deviation Colour Matching. SDCM has the same meaning as a "MacAdam ellipse". A 1-step MacAdam ellipse defines a zone in the CIE 1931 2 deg (xy) colour space within which the human eye cannot discern colour difference. Most LEDs are binned at the 4-7 step level, in other words you certainly can see colour differences in LEDs that are ostensibly the same colour.

<u>SDCM</u>	<u>CCT @ 3000K</u>	
1x	±30K	±0.000
2x	±60K	±0.001(
4x	±100K	±0.002
7-8x	±175K	±0.0060

ENERGYLABEL

Electrical appliances carry an energy label. This label prints the so-called energy efficiency score in classes. These classes range from 'very energy efficient' (A++) to 'very waste of energy' (E). A more expensive new device may eventually turn out to be cheaper if the energy score is good. IPEA is the new system for luminaire energy efficiency assessment.

BEAM

The Illuminance Cone Diagram indicates the maximum illuminance at different distances from the fixture.

POLAR DIAGRAM

The polar luminous intensity graph illustrates the distribution of luminous intensity, in candelas, for the transverse (solid line) and axial (dashed line) planes of the luminaire. The shown curve provides a visual guide to the type of distribution expected from the luminaire e.g. wide, narrow, direct, indirect... in addition to intensity.

next generation led

REFERENCE	WATT	MOUNT	COLOR	BEAM			
180-0333	150W	E40	4000K	90°			
180-0334	150W	E40	5000K	90°			
180-0337	150W	FIX	4000K	90°			
180-0338	150W	FIX	5000K	90°			
180-0339	ACCESSORY 12" UPLIGHT 15% BATWING						
180-0364	180-0364 PRISMATIC REFLECTOR						
180-0365	-0365 DC POWER ADJUSTER 50%						
180-0366 DC POWER ADJUSTER 70%							
180-0373 REMOTE CONTROL FOR OCCUPANCY SENSOR							

Click on the picture below to watch a case study.

Prior to the installation, light level and distribution was uneven and inadequate at the workplane and floor

After the installation, light levels and distribution was far more uniform and brighter.