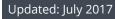
next generation led

info@nextgenerationled.be www.nextgenerationled.be Tel + 32 53 71 09 42

DOWNLIGHTER GIMBAL

Properties

- Lifespan L70 %: > 50.000 hours
- 60° tilt adjustment 360° rotation
- Energy savings up to 80%
- Flicker free to reduce the eyestrain
- Dimmable
- Environment friendly : no mercury or toxic gasses
- External driver
- Immediate start regardless of temperature or humidity
- Equal lightdistribution and high uniformity
- Warranty: 3 years

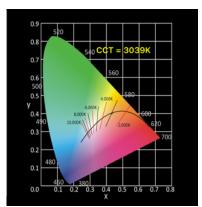


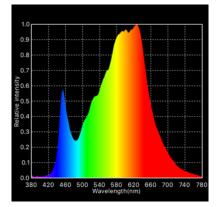
Specifications

GIMBAL					
Power	7 W	10 W	20 W	30 W	40 W
Luminous intensity	700	1000	2000	3000	4000
Beam Angle	25°/45°	25°/45°	25°/60°	25°/60°	25°/60°
Input voltage	AC 100 ~240 V / 50-60 Hz				
Color temperature	3000K / 4000K / 5000K				
Powerfactor	> 0.90 Pf				
Color rendering index	CRI>80 (also available in CRI 98)				
Dia. downlighter	90 mm	114 mm	138 mm	165 mm	190 mm
Height downlighter	110 mm	125 mm	120 mm	145 mm	165 mm
Cutout opening	75 mm	100 mm	125 mm	150 mm	170 mm

Application

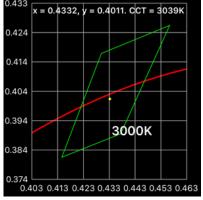
Office, shops, showroom, exposition hall, meetingroom,...





CIE 1931

The CIE color space, developed in 1931, is still used to define colors, and as a reference for other color spaces. The figure is a two-dimensional display of colors of the same intensity (brightness), which is based on observations of color measurements by people.



SPECTRUM

Isaac Newton used the Latin word spectrum to define the color series which arose when he dropped a bundle of sunlight through a glass prism. The color spectrum consists of the colors of the rainbow with the color sequence red-orange-yellow-green-blue-indigo-violet, which corresponds to bearish wave length (increasing frequency) of the light waves.

C78 377

4332.

0.423

0.413

0.403

0.393

0.383

0.373

= 0.4011. CCT = 3039K

3000K

0.410 0.420 0.430 0.440 0.450 0.460 0.470

				Re =	
R1				Ra =	84
R2					93
R3					97
R4					83
R5					84
R6					91
R7					86
R8			12		68
R9					28
210					83
211					81
12					72
13					86
14					99
15					79
	0 20 30	40 50	60 70	80 90 10	

CRI HISTOGRAM

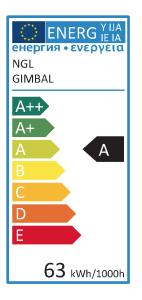
The color reproduction of a light source indicates whether the color of an object can be displayed true to nature. The graph shows whether we can accurately determine color, depending on the color rendering properties of the light source.

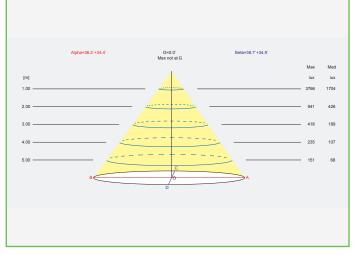
Ra = average of R1 to R8

Re = average of R1 to R15

R9 = saturated red. Should be as high as possible.

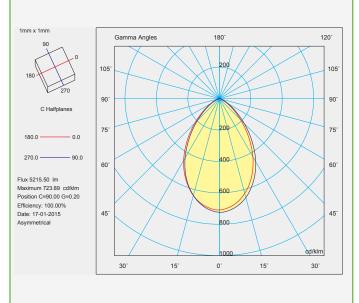
SDCM


SDCM is an acronym which stands for Standard Deviation Colour Matching. SDCM has the same meaning as a "MacAdam ellipse". A 1-step MacAdam ellipse defines a zone in the CIE 1931 2 deg (xy) colour space within which the human eye cannot discern colour difference. Most LEDs are binned at the 4-7 step level, in other words you certainly can see colour differences in LEDs that are ostensibly the same colour.


<u>SDCM</u>	<u>CCT @ 3000K</u>	ΔUV
1x	±30K	±0.0007
2x	±60K	±0.0010
4x	±100K	±0.0020
7-8x	±175K	±0.0060

ENERGYLABEL

Electrical appliances carry an energy label. This label prints the so-called energy efficiency score in classes. These classes range from 'very energy efficient' (A++) to 'very waste of energy' (E). A more expensive new device may eventually turn out to be cheaper if the energy score is good. IPEA is the new system for luminaire energy efficiency assessment.



BEAM

The Illuminance Cone Diagram indicates the maximum illuminance at different distances from the fixture.

POLAR DIAGRAM

The polar luminous intensity graph illustrates the distribution of luminous intensity, in candelas, for the transverse (solid line) and axial (dashed line) planes of the luminaire. The shown curve provides a visual guide to the type of distribution expected from the luminaire e.g. wide, narrow, direct, indirect... in addition to intensity.

DOWNLIGHTER GIMBAL

REFERENCE	WATT	LUMEN	COLOR	BEAM	DIMMABLE
125-0062	7 W	700 Lm	3000 K	25°	Yes
125-0063	7 W	700 Lm	4000 K	25°	Yes
125-0064	7 W	700 Lm	5000 K	25°	Yes
125-0065	7 W	700 Lm	3000 K	45°	Yes
125-0066	7 W	700 Lm	4000 K	45°	Yes
125-0067	7 W	700 Lm	5000 K	45°	Yes
125-0068	10 W	1000 Lm	3000 K	25°	Yes
125-0069	10 W	1000 Lm	4000 K	25°	Yes
125-0070	10 W	1000 Lm	5000 K	25°	Yes
125-0071	10 W	1000 Lm	3000 K	45°	Yes
125-0072	10 W	1000 Lm	4000 K	45°	Yes
125-0073	10 W	1000 Lm	5000 K	45°	Yes
125-0074	20 W	2000 Lm	3000 K	25°	Yes
125-0075	20 W	2000 Lm	4000 K	25°	Yes
125-0076	20 W	2000 Lm	5000 K	25°	Yes
125-0077	20 W	2000 Lm	3000 K	60°	Yes
125-0078	20 W	2000 Lm	4000 K	60°	Yes
125-0079	20 W	2000 Lm	5000 K	60°	Yes
125-0080	30 W	3000 Lm	3000 K	25°	Yes
125-0081	30 W	3000 Lm	4000 K	25°	Yes
125-0082	30 W	3000 Lm	5000 K	25°	Yes
125-0083	30 W	3000 Lm	3000 K	60°	Yes
125-0084	30 W	3000 Lm	4000 K	60°	Yes
125-0085	30 W	3000 Lm	5000 K	60°	Yes
125-0086	40 W	4000 Lm	3000 K	25°	Yes
125-0087	40 W	4000 Lm	4000 K	25°	Yes
125-0088	40 W	4000 Lm	5000 K	25°	Yes
125-0089	40 W	4000 Lm	3000 K	60°	Yes
125-0090	40 W	4000 Lm	4000 K	60°	Yes
125-0091	40 W	4000 Lm	5000 K	60°	Yes

